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The absolute rate theory of Eyring,l which provided 
a highly useful theoretical tool for studying chemical 
reactions, is essentially associated with the concept of 
“transition state”, a unique state on the “potential en- 
ergy surface” of the reacting system. To obtain the 
absolute rate theoretically involves the following steps: 
(i) calculating the potential energy function in terms 
of the atomic positions; (ii) obtaining the transition 
state and reactant and product points; (iii) unequivo- 
cally determining the reaction path connecting the 
relevant stable points and the transition state point; and 
(iv) calculating the absolute rate of the nuclear rear- 
rangement along the reaction path by appropriate 
quantum statistical mechanical approaches. 

Modern ab initio quantum-chemical method are ca- 
pable of calculating the total energy of a molecular 
system with a fixed nuclear arrangement-adiabatic 
potential, V-based on the Born-Oppenheimer ap- 
proximation.2 We represent the nuclear configuration 
of a chemically reacting system composed of N nuclei 
by a point in 3Ndimensional configuration space with 
space-fixed 3N Cartesian coordinates, X,, Y,, 2, (a = 
1, 2, ... N). The potential energy function, V, can be 
represented in terms of X,, Y,, Z,, and we can obtain 
the equilibrium points as satisfying 

= 0 (a = 1, 2, ... N) 
av av av 
ax, au, az, - = -  = -  

Practical methods of calculating the energy gradient 
and of locating the equilibrium points have been de- 
velopede3 

On the basis of results already established for steps 
i and ii, the present Account aims to discuss steps iii 
and iv. Molecules react with each other while vibrating 
about an equilibrium configuration, rotating as a whole 
around the center of mass, and exchanging energies in 
all degrees of freedom. The molecular changes in nu- 
clear configuration are so varied that it is difficult to  
imagine a simple classical picture of the motion. On 
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the other hand, the chemical reaction path is a concept 
which has a definite foundation from empirical obser- 
vations. The problem of how to connect this empirical 
concept of a reaction path to a model relevant to the- 
oretical treatment is a matter of deep concern in 
chemistry. A number of different approaches have been 
developed for defining the reaction ~ a t h . ~ - ~  Here, the 
discussion is focused on our “intrinsic reaction 
coordinate” or “IRC” approach. 

The IRC approach is based on the classical equations 
of motion, written as 

d *  av -((Max,) = -- etc. 
dt ax, 

Consider movement of the nuclei from a given point 
with an infinitesimal velocity. The velocity of nuclei 
is given by 

t + constant, etc. 
av M a x ,  = -- ax, 

for a small time interval. Since, by assumption, the 
nuclei start to move with an infinitesimal velocity, i.e., 
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X ,  = 0 at t = 0, the integration constant should be zero. 
This incremental change introduces the concept of 
“intrinsic motion”. 

In this way, we obtain the simultaneous equations8 

... (1) 
MadXa Mad Y,  MadZ, 

* * *  av av av 
d X a  a y a  aza  

If we adopt the “mass-weighted’’ Cartesian coordinates 
x i  (i = 1, 2, ... 3N) in which 

=-=---- - - 
- - - 

M,’/2X,  = ~3, ,_z ,  Ma1’2Y, = ~3,-1, M,’lzZa = ~ 3 ,  

eq 1 becomes 

(2) 
dxl dXp dZ3N - = - -  - = -  
av av * * a  av - -  - 
ax, ax2 dX3N 

with the kinetic energy expression 
RN 

i=l  

The basic idea of this formalism was proposed in 
1970,9 and the solution of this equation which reaches 
a transition-state point from a stable equilibrium point 
was named as “intrinsic reaction coordinate (IRC)”.1° 
Equation 1 as well as eq 2 may be called the “IRC 
equation”. These are regarded as the fundamental 
equations which determine the “center line” of the re- 
action path region, since the IRC represents the vi- 
brationless-rotationless motion path of the reacting 
system. The IRC equation has an infinite number of 
solutions in addition to the IRC. These solutions are 
generally called “meta-IRC’s”.ll 

Nature of the IRC 
We designate the infinitesimal distance of the 

mass-weighted Cartesian configuration space as ds. If 
we denote each side of eq 2 as dr, we have the relation 

which is valid on a meta-IRC. Also it should be noticed 
that on a meta-IRC the useful relation 

ds 
dV 
ds 

d r  = - 
- 

(3) 

holds with respect to the parameter r,  since on a 
meta-IRC we have 

(8) K. Fukui, “The World of Quantum Chemistry. Proceedings of the 
First Intemational Congress of Quantum Chemistry, Menton, 1973”, R. 
Daudel and B. Pullman, Eds., D. Reidel, Dordrecht, Holland, 1974, p 113. 

(9) K. Fukui, J.  Phys. Chem., 74,4161 (1970); also see ref 13 in ref 14. 
(10) Why the term “intrinsic” waa used here waa to introduce the 

concept of “intrinsic motion”-a quasistatic nuclear displacement. The 
term “intrinsic path” waa suggested by Mezey” instead of “intrinsic 
coordinate”. This may be reasonable since an IRC is a mathematical 
curve, but this curve haa been obtained through a number of too sim- 
plified aasumptions to be named “ p a t h  of a chemical reaction. 

(11) A. Tachibana and K. Fukui, Theor. Chim. Acta, 49, 321 (1978). 

Therefore, we can express the IRC equation in another 
compact form as 

av - 
dxi ax i  
- = - (i = 1, 2, ’*. 3N) 
ds dV (4) 

ds 

If the space is provided with the metric ds2 = 2Tdt2, 
the IRC is then shown to be the path for which the 
gradient of the potential energy, dV/ds, is an extre- 

In this sense, the IRC descending from the 
transition-state point may be called the “steepest de- 
scent path”. It is evident from eq 3 that the symmetry, 
if any exist in the geometry of the reacting system, is 
conserved along the IRC, so that the orbital symmetry 
is also conserved along the IRC.9J3 

Reaction Ergodography 
Equation 1 or 2 comprises a set of differential equa- 

tions. As stated before, they have an infinite number 
of solution curves. The particular solution which cor- 
responds to the IRC is easily obtained if we start from 
the transition-state point and successively plot the 
neighboring points by a numerical gradient calculation 
along the direction given by the IRC equation. The 
following examples have been considered in several 
papers14-19 in which the change in geometry of the re- 
acting molecules along the IRC was given: 

CH4 + T - CH3T + H (i14) 

CD4 + T + CDBT + D ( i i 9  

CHI + T - CH3 + HT (iiiI5) 

CD4 + T - CD3 + DT ( i v 9  

HNC - HCN (V’? 

CH4 + H- - H- + CH4 (vi”) 

CHFO - CO + HF (vii’8) 

CzHSF ----* CzH4 + HF (viiilg) 

The procedure of plotting the IRC for a chemical re- 
action is called “reaction erg~dography”.’~ 

The IRC calculation determines the energy as well 
as the geometry of the reacting system. The energy 
change along the IRC gives the potential barrier shape. 
In this case the width of the barrier provides informa- 
tion about the isotope effect.15 For instance, the effect 
of deuteration in the methane-tritium reactions was 
studied.15 In the abstraction mode ((iii) and (iv)) the 
barrier broadening was remarkable before reaching the 

(12) (a) K. Fukui, A. Tachibana, and K. Yamashita, Int. J .  Quantum 
Chem., in press; (b) K. Fukui, ibid., in press, and many papers cited 
therein. 
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(1975). 

2153 (1977). --__ ~ 

(17) B. D. Joshi and K. Morokuma, J.  Chem. Phys., 67,4880 (1977). 
(18) K. Morokuma, S. Kato, and K. Hirao, J .  Chem. Phys., 72,6800 

(19) S. Kato and K. Morokuma, J. Chem. Phys., 73, 3900 (1980). 
( 1980). 
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transition state, whereas for the substitution mode ((i) 
and (ii)) it occurred, even more remarkably than the 
abstraction case, after the transition state. These re- 
sults suggest that the mass effect mainly relates to the 
C-H stretching mode. The effect in the abstraction is 
reduced by that on the H-T bond to be formed, 
whereas in the substitution case the effect in the CH3 
inversion adds. 

Once the geometry along the IRC has been deter- 
mined, we can discuss the force acting on atoms to 
displace them.14 The potential energy gradient is 
partitioned by dividing the electron density into several 
terms, including exchange, delocalization, and polari- 
zation terms.20 By such treatments the origin of fa- 
vorableness and unfavorableness of a given reaction 
path is discussed in terms of orbital interactions.21 In 
the case of methane-tritium reaction i, for instance, the 
importance of 3al - 4al local excitation configuration 
in methane was quantitatively pointed 0 ~ t . l ~  

If desired, we can combine the IRC approach with the 
considerations of the interaction of particular orbit- 
a1s8lZ1-the interaction of the highest occupied molec- 
ular orbital (HOMO) and the lowest unoccupied mo- 
lecular orbital (LUM0)-to discuss the nature of re- 
action paths and the detailed mechanism of that reac- 
tion. With each geometry along the reaction path, the 
importance of a particular orbital interaction can be 
identified.22-25 A recent study to visualize the phase 
pattern of one single “interaction frontier orbital”26 or 
“interactive hybrid MO”27 for each reactant molecule 
helps to elucidate the mechanism of a chemical reaction. 
An animated picture displaying the essential features 
of a chemical reaction would be a powerful heuristic 
device. 
The IRC Equation with Internal  Coordinates 

Although the use of 3N Cartesian coordinates en- 
counters essentially no significant difficulty in the re- 
action ergodography, it is ovbiously not suitable for 
discussing the potential energy surface, since these co- 
ordinates include translational and rotational motion. 
Thus, it is worthwhile to reduce the number of variables 
to 3N - 6 by eliminating the translation and the rota- 
tion of the reacting system as a whole. 

Consider any set of internal coordinates which is 
sufficient to uniquely describe the nuclear arrangment 
of the reacting system. Denote these by 41, q2,  ... q n  (n  
= 3n - 6), which are expressible in terms of 3N Carte- 
sian coordinates X,, Y,, 2,. Then, the following rela- 
tions are obtained. 

(20) H. Fujimoto and K. Fukui, Israel J. Chem., 19, 317 (1980). 
(21) K. Fukui, ‘‘Theory of Orientation and Stereoselection”, Springer, 

Berlin, 1970, 1975; Acc. Chem. Res., 4, 57 (1971)’. 
(22) K. Fukui, “23rd International Congress of Pure and Applied 

Chemistry”, Vol. 1, Butterworths, London, 1971, p 65. 
(23) H. Fujimoto, S. Yamabe, and K. Fukui, Bull. Chem. SOC. Jpn., 

46,1556,2424 (1972); H. Fujimoto, S. Yamabe, T. Minato, and K. Fukui, 
J.  Am. Chem. SOC., 94,9205 (1972); S .  Kato, H. Fujimoto, S. Yamabe, and 
K. Fukui, ibid., 96,2024 (1974); S. Yamabe, T. Minato, H. Fujimoto, and 
K. Fukui, Theor. Chim. Acta, 32, 187 (1974); H. Fujimoto, S. Kato, S. 
Yamabe, and K. Fukui, J. Chem. Phys., 60,572 (1974). 

(24) H. Fujimoto and K. Fukui in “Chemical Reactivity and Reaction 
Paths”, G. Klopman, Ed., Wiley, New York, 1974, p 23. 

(25) T. Minato, S. Yamabe, H. Fujimoto, and K. Fukui, Bull. Chem. 
SOC. Jpn., 51,1(1978); S. Yamabe, T. Minato, H. Fujimoto, and K. Fukui, 
ibid., 52, 3243 (1979). 

(26) K. Fukui, N. Koga, and H. Fujimoto, J. Am. Chem. SOC., 103,196 
(1981). 

(27) H. Fujimoto, N. Koga, M. Endo, and K. Fukui, Tetrahedron Lett. 
22, 1263 (1981); ibid., in press; H. Fujimoto, N. Koga, and K. Fukui, J .  
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We add the following six relations after Eckart? 
CM,dX, = CM,dY,= CMadZa = 0 
a a a 

CMa(YadZa - ZadYa) = CM,(Z,dX, - X,dZ,) = 
a a 

CM,(X,dY, - Y,dX,) = 0 (6) 
a 

which assures a zero total momentum and zero total 
angular momentum motion. Note that the increments 
given by eq 1 satisfy the relation of eq 6.8 Then, we get 
3N linear simultaneous equations with respect to 3N 
unknowns dX,, dY,, dZ,, from which we obtain 

If we put these relations into the kinetic energy formula, 
we obtain 

n 

in which 

ax, ax, au, au, az, az, -- + -- + -- 
aqi aqj aqi aqj aqi aqj 

can be represented in tems of internal coordinates qi)s.12 
In actuality the direct calculation of the elements aij is 
never an easy task. But the inverse of the matrix (a&, 
denoted by (a-lij), can easily be obtained from 

The proof that this is an element of the inverse matrix 
of (ai,) was established by Wilson.29 Therefore, aij can 
be obtained by calculating the inverse matrix of (a-lij). 

We can follow the same procedure which was used 
to derive eq 1 to derive the IRC equation with internal 
motion, 

n n n 

-- --- - -  - av - av .** - av - 
aq1 aq2 a q n  

or, alternatively, if written in terms of a-$ 

(10) 
dqn - -  - -  ... - dq2 - dq1 

n av Ca-lnj- 
j=1 dqj 

n av n av 
-1 .- a 21 

j=1 aqj j=1 aqj 

I t  is easy to prove that the trace of geometry of the 

(28) C. Eckart, Phys. Reu., 47, 552 (1935). 
(29) E. B. Wilson, Jr., J.  Chem. Phys., 7, 1047 (1939); E. B. Wilson, 

Jr., J. C. Decius, and P. C. Cross, “Molecular Vibrations. The Theory 
of Infrared and Raman Vibrational Spectra”, McGraw-Hill, New York, 
1955. 



366 Fukui Accounts of Chemical Research 

reacting molecules given by eq 9 agrees with that ob- 
tained by eq 1. 

For the purpose of deriving various analytical rela- 
tions, one of the most convenient sets of internal co- 
ordinates is the following. If we denote the internuclear 
distance between two nuclei a and /3 as R,,, we can take 
as the variables q l ,  q,, ... qn. 

q1 = R23, q 2  = R31, 43 = RlZ 
q3,+,,, = Rm,3+, ( r  = 1, 2, ... N - 3; m = 1, 2, 3) 

This set of coordinates is, for brevity, referred to as 
“internal F coordinates”.lZb If we adopt the internal 
F-coordinate system, all elements of the matrix (dij) 
are conveniently and explicitly expressed in terms of 
41, q 2 ,  . e *  qfl. 

Perhaps the simplest illustration of the internal IRC 
is for the collinear triatomic reaction. Here, the IRC 
equation is 

30 

with the nuclear arrangment 

This corresponds to a kinetic energy expression with 
constant aij’s 

T = 2-’(M1 + Mz + M3)-l(M3(Mi + M2)412 + 
2MlM34142 + M ~ ( M z  + M3)4Z21 

Since this quadratic form is converted to a diagonal one 
by a linear transformation of q1 and q 2 ,  the IRC can be 
discussed in Cartesian space by the use of skewed co- 
ordinate axes taken by Eyring.la 
Complete Classical Hamiltonian of a Reacting 
System 

Recently, the kinetic energy formula for large am- 
plitude motions in nonrigid molecules has attracted the 
attention of theoreticians. Several papers have been 
published which discuss the Hamiltonian appropriate 
for these p r ~ b l e m s . ~ l - ~ ~  

One of the least rigid molecules is the chemically 
reacting system regarded as a supermolecule. An exact 
kinetic energy formula pertinent to this system is rep- 
resented by12ap32 

R N S  

T = (1/2) -C-ajj4i4j + (M/2)(X2 + Y2 + Z,) + 
ij=1 - - 

(1/2)(11u12 + 12.22 + I3u32) + (1 /2) ( I<h12 + 
12-1m22+ 13-1m32) + (ulml + u2mz + u3m3) (11) 

in which the first term on the right-hand side is the 
internal motion within the conditions of eq 6, the sec- 
ond is the translational energy of the center of mass, 
M being the total mass, X, Y,  2 are the space-fixed 
Cartesian coordinates of the center of mass, and the 

(30) See, however, the remarks mentioned in Appendix 1 of ref 12a. 
(31) R. Meyer and Ha. H. Gwthard,  J. Chem. Phys., 49,1510 (1968). 
(32) H. M. Pickett, J. Chem. Phys., 56, 1715 (1972). 
(33) (a) P. R. Bunker, J. Chem. Phys., 47,718 (1967); 48,2832 (1968); 

J. T. Hougen, P. R. Bunker, and J. W. C. Jons, J. Mol. Spectros., 34,136 
(1970); (b) A. Sayvetz, J. Chem. Phys., 7,383 (1939); J.  K. G. Watson, 
Mol. Phys., 15,479 (1968); 19,465 (1970); C. R. Quade, J. Chem. Phys., 
65,700 (1976); (c) D. C. Mode and Ch. V. S. Ramachandra b o ,  J. Mol. 
Spectros., 45,120 (1973); J. C. D. Brand and Ch. V. S. Ramachandra b o ,  
ibid., 61,360 (1976); P. G. Mezey and V. S. Ramachandra Rao, J. Chem. 
Phys., 72,121 (1980); (d) F. Jsrgensen, Int. J. Quantum Chem., 14, 55 
(1978). 

remaining terms originate from nonzero total angular 
momentum. The third term is the usual rotational 
energy, ur ( r  = 1,2,3) being the components of angular 
velocity about the instantaneous principal axes of in- 
ertia with instantaneous principal moments of inertia 
I ,  (r  = 1,2,3). The angular velocity components u, are 
given by the Eulerian angles 8, 4, $34 and their time 
derivatives as 

u1 = (sin $)e  - (sin 8 cos $14 
u2 = (cos $)e + (sin 6 sin $)$ 

u3 = li/ + (COS e)$ 
The fourth term arises from the internal rotational 
motion of each nucleus around the center of mass with 
respect to the principal axes of inertia. The m, (r  = 1, 
2, 3) are given by 

N 

a= 1 
ml = CMa(t2aha - [3a‘!2a), etc. 

in which tla, tZa, t3a are the Cartesian coordinates of 
nucleus a whose axes are coincident with the three 
principal axes of inertia. The I ,  as well as tra are ob- 
tained as functions of the internal coordinates qi by use 
of the equations 

qi’ = q [ (q l ,  q2, ... q3N-8) (i = 1, 2, ... 3N - 6) 

(qi’)’ = ([la - t l ~ ) ’  + (t2a - t 2 , d 2  + (t3a - 43,)’ 

CMat1a = CMatPa = CMat3a = 0 
a a 

CMatZaba = CMat3atla = CMatlat2a = 0 
a a a 

in which qi denote any set of internal coordinates and 
qi’ are the internal F coordinates. The last term of the 
right-hand side of eq 11 stands for the interaction be- 
tween the rotation “as a whole” and the internal (vi- 
brational) rotation of each nucleus. 

The utility of eq 11 is that it is a general expression 
of kinetic energy for a reacting system and is repre- 
sented in terms of 3N coordinates X, Y,  2, 6, 4, $, qi 
(i = 1, 2, ... 3N - 6) and their time derivatives. Ac- 
cordingly, we can easily set up Lagranges’s equations 
of motion to discuss the classical dynamics. Also the 
momenta conjugate to these coordinates, and the 
classical Hamiltonian, may be obtained by the usual 
 procedure^^^^^^ which leads to the quantum-mechanical 
operator form.35 
The Cell Structure of the Configuration Space 

One of the most important features of the IRC ap- 
proach with internal coordinates comes about in con- 
nection with the’cell structure of the internal configu- 
ration space.36 The whole space is divided into cells 
by each set of meta-IRC’s, each containing one stable 
equilibrium point normally. Each meta-IRC belonging 
to a cell starts from the equilibrium point and runs 
toward the cell boundary. The intercell boundary is 
composed of (n - 1)-dimensional subspaces, each con- 
taining normally one transition-state point which con- 
nects that cell to another. The stable equilibrium point 
of a cell is called the “cell center”. When we discuss 

(34) E. T. Whittaker, “A Treatise on the Analytical Dynamics of 
Particles and Rigid Bodies”, Cambridge University Press, Cambridge, 
1937. 
(35) B. Podolsky, Phys. Rev., 32, 812 (1928). 
(36) A. Tachibana and K. Fukui, Theor. Chim. Acta, 51,189 (1979). 
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Cell A2 

Figure 1. The cell structure indicated by a simple model. (0) 
Cell center; (x) transition-state point; (- - -) equipotential surface 
(line; (-) meta-IRC: A heavy dashed line represents the intercell 
bound and a heavy straight line the IRC. y = const.[(x2 - 
l ~ 1 / 2 / ~ x ~ / ~ 2  (b2 > 2a2). 

a chemical reaction between two points corresponding 
to initial and final states, the cell containing the initial 
state is named the initial cell and that containing the 
final state, the final cell. 

The characteristics of the cell structure are most 
tangibly understood by adopting the following simple 
mode1:l’ 

ds2 = dx2 + dy2 = 2Tdt2 

It is seen in Figure 1 that meta-IRC’s are perpendicular 
to equipotential surfaces. This is a general feature of 
IRC. It is possible that on the cell boundary sur- 
rounding one cell there may exist more than one tran- 
sition state point. An illustrative model is 

ds2 = dr2 + r2dd2 = 2Tdt2 
V =  

(r - a)2 + a2[sin2 (n/2)]4 (r, &polar coordinates) 
The result is given in Figure 2. 

The cell structure is characteristic of a given reacting 
system. The cell concept is essential for a wave-me- 
chanical interpretation of a chemical reaction between 
two neighboring cells. As might be anticipated, it has 
been shown that techniques from differential geome- 
try3’ are effective in developing the IRC ap- 
proach.11*36*3g40 Several interesting mathematical re- 
sults have been obtained concerning the IRC.11J2*Niw 
Absolute Rate of Chemical Reactions 

The cell structure of configuration space is essentially 
important for the wave-mechanical evaluation of the 
absolute rate of chemical reactions. The chemical re- 
action is regarded as a large-amplitude nuclear motion 
in the internal confiiation space. The amplitude may 
in many cases be infinitely large. Here, however, we 
imagine the atomic rearrangement only between finite 
cells, corresponding to intramolecular reactions. 

(37) J. L. Synge, Philos. Trans. R. Soc. London, Ser. A, 226,31 (1926); 
also aee any textbook available on differential geometry. 

(38) A. Tachibana and K. Fukui, Theor. Chim. Acta, 51, 275 (1979). 
(39) A. Tachibana and K. F’ukui, Theor. Chim. Acta, 57, 81 (1980). 
(40) A. Tachibana, Theor. Chim. Acta, 58, 301 (1981). 

v = a2(1 - x2)2 + b2y2 

,’ :‘ -\ i t  
1 \ \  

1 \____, ’  ,‘ \ 
<\-.-./*’ 

; \  
,/ \ 

Cell A3 ‘i--,,,’ ,: \ 

Figure 2. A model for the two-dimensional n-cell space. (The 
casen = 3 is indicated.) See Figure 1 for identification of symbols. 

Consider one of the cells as the initial cell. Let the 
Hamiltonian operator for the internal motion of the 
reacting system be 7f .  As has been mentioned before, 
we can assume that the classical expression of Hamil- 
tonian of the form 

is known, in which a-lij is a function of coordinates qi 
(i = 1,2,  ... n) and Pi is the momentum which conjugates 
to qi. Then, the quantum-mechanical expression of 
Hamiltonian operator given by Podolskf6 

V(41, q2, ”’ 4 n )  
is applicable, where a = det(aij). If the Hamiltonian is 
applicable to more than one cell region, we call it the 
“global” Hamiltonian. In this expression, 7f is taken 
so that the integral 

J- - 9 .  JQ*(41, 42, ‘ e ’  q n ) Q ( q , ,  q 2 ,  
... 9,) dqi dq2 dqn 

in which Q(ql, q2, . . . qn) is a global wavefunction, 
becomes unity. If the global wavefunction were known, 
a full description of dynamics of nuclear rearrangement 
from one cell to another would be easy in the framework 
of the general wave-mechanical treatment for time-de- 
pendent processes.4l The method consists of12 (a) ob- 
taining the cell Hamiltonian and its eigenfunctions with 
respect to the initial cell which is surrounded by a hy- 
pothetical wall of infinitely high potential, (b) con- 
structing the initial density function for the initial cell 
by use of the cell wavefunctions obtained in (a) and the 
initial statistical distribution, (c) obtaining the time 
development of the cell wavefunctions obtained in (b) 
in terms of global wavefunctions, and finally (d) cal- 
culating the time-dependent population of the initial 
cell from the time-dependent density function. How- 
ever, owing to the great deal of computational diffi- 
culties involved in the procedure, no actual calculation 
has yet been done. Certainly, a recourse to some 

(41) E.g., see D. N. Zubarev, “Nonequilibrium Statistical 
Thermodynamics”, Consultants Bureau, New York, 1974. 
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in the IRC Hamiltonian. A calculation of the tunneling 
rate of the reaction HNC - HCN was carried outa by 
the sue of the IRC Hamiltonian of Miller and co- 
workers,46b obtaining the interesting result that the rate 
constant value - lo5 s-l was achieved about 8 kcal/mol 
below the classical threshold. 
Concluding Remarks 

The IRC approach in chemodynamical studies has 
just begun to take shape. The present stage of the 
theory is mainly to establish a framework. With this 
in mind the theory has been formulated to be as broadly 
applicable as possible. At this stage, it may be tolerable 
to sacrifice pragmatism because of the shortage of ef- 
ficient computing procedures. It is expected that in the 
near future, however, actual calculations will become 
feasible using a new generation of computers. In an- 
ticipation of these advances, the theory should be armed 
with mathematical foundations. 

In particular, the global character of configuration 
space should be clarified by the use of global coordi- 
nates. The solution of the multidimensional 
Schrodinger equations, the rate problem in general 
nonadiabatic cases, the intercell tunneling rate involving 
infinite cells, the treatment of the nonzero angular 
momentum case using the general kinetic energy for- 
mula of eq 11, and IRC approach for excited state re- 
actions, and so forth will be explored by mathematical 
methods. 
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and the editors for their suggestions and comments. 
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This Account deals with a new perspective on the 
interaction of light with molecules. Although much of 
chemistry may take place in the dark (literally and 
figuratively), our knowledge of fundamental molecular 
and chemical processes is often greatly enhanced when 
we shed light on the subject! Light of various wave- 
lengths and intensites can be used as a probe of mo- 
lecular structure and dynamics, and sometimes light 
acts as a reagent or product in a chemical reaction. 

Very often, we can profit from a classical or semi- 
classical picture of the interaction of light with mole- 
cules. It is easy, for example, to imagine a heteronuclear 
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diatomic molecule as two partially charged masses 
connected by a spring, oscillating and absorbing energy 
due to a resonantly oscillating electric field. This pic- 
ture enhances our understanding of infrared vibrational 
transitions. 

In electronic absorption and emission spectra, we also 
have a classical picture of sorts, namely, the Franck- 
Condon idea of a vertical transition in which the slug- 
gish nuclei retain their position and momentum while 
the electrons quickly make a transition. After the 
electrons have made a transition, the nuclei experience 
new forces; they find themselves displaced relative to 
the equilibrium geometry of the new potential surface, 
and interesting dynamics should ensue. Unfortunately, 
most discussions of electronic transitions cut short any 
allusions to dynamics and explain the absorption 
spectrum in terms of Franck-Condon overlaps of the 
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